

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

gatssh

gatssh是一个web ssh工具，基于go语言和beego框架，支持同时向多台主机发送命令，并返回结果。

支持用户名与密码的形式连接主机；

线程池暂时为1000，用户名与密码：admin；123456，暂时只能在代码里或者数据库里修改。

已经尝试在1000并发的情况下，操作15000台服务器，没有性能问题。

希望有懂前端的同学可以一起。。

Version 1.3 (2016-12-01)

Changes:

	Go 1.1 is no longer supported

	Use decimals fields in MySQL to format time types (#249)

	Buffer optimizations (#269)

	TLS ServerName defaults to the host (#283)

	Refactoring (#400, #410, #437)

	Adjusted documentation for second generation CloudSQL (#485)

	Documented DSN system var quoting rules (#502)

	Made statement.Close() calls idempotent to avoid errors in Go 1.6+ (#512)

New Features:

	Enable microsecond resolution on TIME, DATETIME and TIMESTAMP (#249)

	Support for returning table alias on Columns() (#289, #359, #382)

	Placeholder interpolation, can be actived with the DSN parameter interpolateParams=true (#309, #318, #490)

	Support for uint64 parameters with high bit set (#332, #345)

	Cleartext authentication plugin support (#327)

	Exported ParseDSN function and the Config struct (#403, #419, #429)

	Read / Write timeouts (#401)

	Support for JSON field type (#414)

	Support for multi-statements and multi-results (#411, #431)

	DSN parameter to set the driver-side max_allowed_packet value manually (#489)

	Native password authentication plugin support (#494, #524)

Bugfixes:

	Fixed handling of queries without columns and rows (#255)

	Fixed a panic when SetKeepAlive() failed (#298)

	Handle ERR packets while reading rows (#321)

	Fixed reading NULL length-encoded integers in MySQL 5.6+ (#349)

	Fixed absolute paths support in LOAD LOCAL DATA INFILE (#356)

	Actually zero out bytes in handshake response (#378)

	Fixed race condition in registering LOAD DATA INFILE handler (#383)

	Fixed tests with MySQL 5.7.9+ (#380)

	QueryUnescape TLS config names (#397)

	Fixed “broken pipe” error by writing to closed socket (#390)

	Fixed LOAD LOCAL DATA INFILE buffering (#424)

	Fixed parsing of floats into float64 when placeholders are used (#434)

	Fixed DSN tests with Go 1.7+ (#459)

	Handle ERR packets while waiting for EOF (#473)

	Invalidate connection on error while discarding additional results (#513)

	Allow terminating packets of length 0 (#516)

Version 1.2 (2014-06-03)

Changes:

	We switched back to a “rolling release”. go get installs the current master branch again

	Version v1 of the driver will not be maintained anymore. Go 1.0 is no longer supported by this driver

	Exported errors to allow easy checking from application code

	Enabled TCP Keepalives on TCP connections

	Optimized INFILE handling (better buffer size calculation, lazy init, …)

	The DSN parser also checks for a missing separating slash

	Faster binary date / datetime to string formatting

	Also exported the MySQLWarning type

	mysqlConn.Close returns the first error encountered instead of ignoring all errors

	writePacket() automatically writes the packet size to the header

	readPacket() uses an iterative approach instead of the recursive approach to merge splitted packets

New Features:

	RegisterDial allows the usage of a custom dial function to establish the network connection

	Setting the connection collation is possible with the collation DSN parameter. This parameter should be preferred over the charset parameter

	Logging of critical errors is configurable with SetLogger

	Google CloudSQL support

Bugfixes:

	Allow more than 32 parameters in prepared statements

	Various old_password fixes

	Fixed TestConcurrent test to pass Go’s race detection

	Fixed appendLengthEncodedInteger for large numbers

	Renamed readLengthEnodedString to readLengthEncodedString and skipLengthEnodedString to skipLengthEncodedString (fixed typo)

Version 1.1 (2013-11-02)

Changes:

	Go-MySQL-Driver now requires Go 1.1

	Connections now use the collation utf8_general_ci by default. Adding &charset=UTF8 to the DSN should not be necessary anymore

	Made closing rows and connections error tolerant. This allows for example deferring rows.Close() without checking for errors

	[]byte(nil) is now treated as a NULL value. Before, it was treated like an empty string / []byte("")

	DSN parameter values must now be url.QueryEscape’ed. This allows text values to contain special characters, such as ‘&’.

	Use the IO buffer also for writing. This results in zero allocations (by the driver) for most queries

	Optimized the buffer for reading

	stmt.Query now caches column metadata

	New Logo

	Changed the copyright header to include all contributors

	Improved the LOAD INFILE documentation

	The driver struct is now exported to make the driver directly accessible

	Refactored the driver tests

	Added more benchmarks and moved all to a separate file

	Other small refactoring

New Features:

	Added old_passwords support: Required in some cases, but must be enabled by adding allowOldPasswords=true to the DSN since it is insecure

	Added a clientFoundRows parameter: Return the number of matching rows instead of the number of rows changed on UPDATEs

	Added TLS/SSL support: Use a TLS/SSL encrypted connection to the server. Custom TLS configs can be registered and used

Bugfixes:

	Fixed MySQL 4.1 support: MySQL 4.1 sends packets with lengths which differ from the specification

	Convert to DB timezone when inserting time.Time

	Splitted packets (more than 16MB) are now merged correctly

	Fixed false positive io.EOF errors when the data was fully read

	Avoid panics on reuse of closed connections

	Fixed empty string producing false nil values

	Fixed sign byte for positive TIME fields

Version 1.0 (2013-05-14)

Initial Release

Contributing Guidelines

Reporting Issues

Before creating a new Issue, please check first if a similar Issue already exists [https://github.com/go-sql-driver/mysql/issues?state=open] or was recently closed [https://github.com/go-sql-driver/mysql/issues?direction=desc&page=1&sort=updated&state=closed].

Contributing Code

By contributing to this project, you share your code under the Mozilla Public License 2, as specified in the LICENSE file.
Don’t forget to add yourself to the AUTHORS file.

Code Review

Everyone is invited to review and comment on pull requests.
If it looks fine to you, comment with “LGTM” (Looks good to me).

If changes are required, notice the reviewers with “PTAL” (Please take another look) after committing the fixes.

Before merging the Pull Request, at least one team member [https://github.com/go-sql-driver?tab=members] must have commented with “LGTM”.

Development Ideas

If you are looking for ideas for code contributions, please check our Development Ideas [https://github.com/go-sql-driver/mysql/wiki/Development-Ideas] Wiki page.

Go-MySQL-Driver

A MySQL-Driver for Go’s database/sql [https://golang.org/pkg/database/sql/] package

[image: Golang Gopher holding the MySQL Dolphin]Go-MySQL-Driver logo

	Features

	Requirements

	Installation

	Usage

	DSN (Data Source Name)

	Password

	Protocol

	Address

	Parameters

	Examples

	Connection pool and timeouts

	LOAD DATA LOCAL INFILE support

	time.Time support

	Unicode support

	context.Context Support

	Testing / Development

	License

Features

	Lightweight and fast [https://github.com/go-sql-driver/sql-benchmark]

	Native Go implementation. No C-bindings, just pure Go

	Connections over TCP/IPv4, TCP/IPv6, Unix domain sockets or custom protocols [https://godoc.org/github.com/go-sql-driver/mysql#DialFunc]

	Automatic handling of broken connections

	Automatic Connection Pooling (by database/sql package)

	Supports queries larger than 16MB

	Full sql.RawBytes [https://golang.org/pkg/database/sql/#RawBytes] support.

	Intelligent LONG DATA handling in prepared statements

	Secure LOAD DATA LOCAL INFILE support with file Whitelisting and io.Reader support

	Optional time.Time parsing

	Optional placeholder interpolation

Requirements

	Go 1.5 or higher

	MySQL (4.1+), MariaDB, Percona Server, Google CloudSQL or Sphinx (2.2.3+)

Installation

Simple install the package to your $GOPATH [https://github.com/golang/go/wiki/GOPATH] with the go tool [https://golang.org/cmd/go/] from shell:

$ go get -u github.com/go-sql-driver/mysql

Make sure Git is installed [https://git-scm.com/downloads] on your machine and in your system’s PATH.

Usage

Go MySQL Driver is an implementation of Go’s database/sql/driver interface. You only need to import the driver and can use the full database/sql [https://golang.org/pkg/database/sql/] API then.

Use mysql as driverName and a valid DSN as dataSourceName:

import "database/sql"
import _ "github.com/go-sql-driver/mysql"

db, err := sql.Open("mysql", "user:password@/dbname")

Examples are available in our Wiki [https://github.com/go-sql-driver/mysql/wiki/Examples].

DSN (Data Source Name)

The Data Source Name has a common format, like e.g. PEAR DB [http://pear.php.net/manual/en/package.database.db.intro-dsn.php] uses it, but without type-prefix (optional parts marked by squared brackets):

[username[:password]@][protocol[(address)]]/dbname[?param1=value1&...¶mN=valueN]

A DSN in its fullest form:

username:password@protocol(address)/dbname?param=value

Except for the databasename, all values are optional. So the minimal DSN is:

/dbname

If you do not want to preselect a database, leave dbname empty:

/

This has the same effect as an empty DSN string:

Alternatively, Config.FormatDSN [https://godoc.org/github.com/go-sql-driver/mysql#Config.FormatDSN] can be used to create a DSN string by filling a struct.

Password

Passwords can consist of any character. Escaping is not necessary.

Protocol

See net.Dial [https://golang.org/pkg/net/#Dial] for more information which networks are available.
In general you should use an Unix domain socket if available and TCP otherwise for best performance.

Address

For TCP and UDP networks, addresses have the form host[:port].
If port is omitted, the default port will be used.
If host is a literal IPv6 address, it must be enclosed in square brackets.
The functions net.JoinHostPort [https://golang.org/pkg/net/#JoinHostPort] and net.SplitHostPort [https://golang.org/pkg/net/#SplitHostPort] manipulate addresses in this form.

For Unix domain sockets the address is the absolute path to the MySQL-Server-socket, e.g. /var/run/mysqld/mysqld.sock or /tmp/mysql.sock.

Parameters

Parameters are case-sensitive!

Notice that any of true, TRUE, True or 1 is accepted to stand for a true boolean value. Not surprisingly, false can be specified as any of: false, FALSE, False or 0.

allowAllFiles

Type: bool
Valid Values: true, false
Default: false

allowAllFiles=true disables the file Whitelist for LOAD DATA LOCAL INFILE and allows all files.
Might be insecure! [http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html]

allowCleartextPasswords

Type: bool
Valid Values: true, false
Default: false

allowCleartextPasswords=true allows using the cleartext client side plugin [http://dev.mysql.com/doc/en/cleartext-authentication-plugin.html] if required by an account, such as one defined with the PAM authentication plugin [http://dev.mysql.com/doc/en/pam-authentication-plugin.html]. Sending passwords in clear text may be a security problem in some configurations. To avoid problems if there is any possibility that the password would be intercepted, clients should connect to MySQL Server using a method that protects the password. Possibilities include TLS / SSL, IPsec, or a private network.

allowNativePasswords

Type: bool
Valid Values: true, false
Default: true

allowNativePasswords=false disallows the usage of MySQL native password method.

allowOldPasswords

Type: bool
Valid Values: true, false
Default: false

allowOldPasswords=true allows the usage of the insecure old password method. This should be avoided, but is necessary in some cases. See also the old_passwords wiki page [https://github.com/go-sql-driver/mysql/wiki/old_passwords].

charset

Type: string
Valid Values: <name>
Default: none

Sets the charset used for client-server interaction ("SET NAMES <value>"). If multiple charsets are set (separated by a comma), the following charset is used if setting the charset failes. This enables for example support for utf8mb4 (introduced in MySQL 5.5.3 [http://dev.mysql.com/doc/refman/5.5/en/charset-unicode-utf8mb4.html]) with fallback to utf8 for older servers (charset=utf8mb4,utf8).

Usage of the charset parameter is discouraged because it issues additional queries to the server.
Unless you need the fallback behavior, please use collation instead.

collation

Type: string
Valid Values: <name>
Default: utf8_general_ci

Sets the collation used for client-server interaction on connection. In contrast to charset, collation does not issue additional queries. If the specified collation is unavailable on the target server, the connection will fail.

A list of valid charsets for a server is retrievable with SHOW COLLATION.

clientFoundRows

Type: bool
Valid Values: true, false
Default: false

clientFoundRows=true causes an UPDATE to return the number of matching rows instead of the number of rows changed.

columnsWithAlias

Type: bool
Valid Values: true, false
Default: false

When columnsWithAlias is true, calls to sql.Rows.Columns() will return the table alias and the column name separated by a dot. For example:

SELECT u.id FROM users as u

will return u.id instead of just id if columnsWithAlias=true.

interpolateParams

Type: bool
Valid Values: true, false
Default: false

If interpolateParams is true, placeholders (?) in calls to db.Query() and db.Exec() are interpolated into a single query string with given parameters. This reduces the number of roundtrips, since the driver has to prepare a statement, execute it with given parameters and close the statement again with interpolateParams=false.

This can not be used together with the multibyte encodings BIG5, CP932, GB2312, GBK or SJIS. These are blacklisted as they may introduce a SQL injection vulnerability [http://stackoverflow.com/a/12118602/3430118]!

loc

Type: string
Valid Values: <escaped name>
Default: UTC

Sets the location for time.Time values (when using parseTime=true). “Local” sets the system’s location. See time.LoadLocation [https://golang.org/pkg/time/#LoadLocation] for details.

Note that this sets the location for time.Time values but does not change MySQL’s time_zone setting [https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html]. For that see the time_zone system variable, which can also be set as a DSN parameter.

Please keep in mind, that param values must be url.QueryEscape [https://golang.org/pkg/net/url/#QueryEscape]’ed. Alternatively you can manually replace the / with %2F. For example US/Pacific would be loc=US%2FPacific.

maxAllowedPacket

Type: decimal number
Default: 0

Max packet size allowed in bytes. Use maxAllowedPacket=0 to automatically fetch the max_allowed_packet variable from server.

multiStatements

Type: bool
Valid Values: true, false
Default: false

Allow multiple statements in one query. While this allows batch queries, it also greatly increases the risk of SQL injections. Only the result of the first query is returned, all other results are silently discarded.

When multiStatements is used, ? parameters must only be used in the first statement.

parseTime

Type: bool
Valid Values: true, false
Default: false

parseTime=true changes the output type of DATE and DATETIME values to time.Time instead of []byte / string

readTimeout

Type: duration
Default: 0

I/O read timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.

rejectReadOnly

Type: bool
Valid Values: true, false
Default: false

rejectreadOnly=true causes the driver to reject read-only connections. This
is for a possible race condition during an automatic failover, where the mysql
client gets connected to a read-only replica after the failover.

Note that this should be a fairly rare case, as an automatic failover normally
happens when the primary is down, and the race condition shouldn’t happen
unless it comes back up online as soon as the failover is kicked off. On the
other hand, when this happens, a MySQL application can get stuck on a
read-only connection until restarted. It is however fairly easy to reproduce,
for example, using a manual failover on AWS Aurora’s MySQL-compatible cluster.

If you are not relying on read-only transactions to reject writes that aren’t
supposed to happen, setting this on some MySQL providers (such as AWS Aurora)
is safer for failovers.

strict

Type: bool
Valid Values: true, false
Default: false

strict=true enables a driver-side strict mode in which MySQL warnings are treated as errors. This mode should not be used in production as it may lead to data corruption in certain situations.

A server-side strict mode, which is safe for production use, can be set via the sql_mode [https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html] system variable.

By default MySQL also treats notes as warnings. Use sql_notes=false [http://dev.mysql.com/doc/refman/5.7/en/server-system-variables.html#sysvar_sql_notes] to ignore notes.

timeout

Type: duration
Default: OS default

Timeout for establishing connections, aka dial timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.

tls

Type: bool / string
Valid Values: true, false, skip-verify, <name>
Default: false

tls=true enables TLS / SSL encrypted connection to the server. Use skip-verify if you want to use a self-signed or invalid certificate (server side). Use a custom value registered with mysql.RegisterTLSConfig [https://godoc.org/github.com/go-sql-driver/mysql#RegisterTLSConfig].

writeTimeout

Type: duration
Default: 0

I/O write timeout. The value must be a decimal number with a unit suffix (“ms”, “s”, “m”, “h”), such as “30s”, “0.5m” or “1m30s”.

System Variables

Any other parameters are interpreted as system variables:

	<boolean_var>=<value>: SET <boolean_var>=<value>

	<enum_var>=<value>: SET <enum_var>=<value>

	<string_var>=%27<value>%27: SET <string_var>='<value>'

Rules:

	The values for string variables must be quoted with '.

	The values must also be url.QueryEscape [http://golang.org/pkg/net/url/#QueryEscape]’ed!
(which implies values of string variables must be wrapped with %27).

Examples:

	autocommit=1: SET autocommit=1

	time_zone=%27Europe%2FParis%27 [https://dev.mysql.com/doc/refman/5.5/en/time-zone-support.html]: SET time_zone='Europe/Paris'

	tx_isolation=%27REPEATABLE-READ%27 [https://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_tx_isolation]: SET tx_isolation='REPEATABLE-READ'

Examples

user@unix(/path/to/socket)/dbname

root:pw@unix(/tmp/mysql.sock)/myDatabase?loc=Local

user:password@tcp(localhost:5555)/dbname?tls=skip-verify&autocommit=true

Treat warnings as errors by setting the system variable sql_mode [https://dev.mysql.com/doc/refman/5.7/en/sql-mode.html]:

user:password@/dbname?sql_mode=TRADITIONAL

TCP via IPv6:

user:password@tcp([de:ad:be:ef::ca:fe]:80)/dbname?timeout=90s&collation=utf8mb4_unicode_ci

TCP on a remote host, e.g. Amazon RDS:

id:password@tcp(your-amazonaws-uri.com:3306)/dbname

Google Cloud SQL on App Engine (First Generation MySQL Server):

user@cloudsql(project-id:instance-name)/dbname

Google Cloud SQL on App Engine (Second Generation MySQL Server):

user@cloudsql(project-id:regionname:instance-name)/dbname

TCP using default port (3306) on localhost:

user:password@tcp/dbname?charset=utf8mb4,utf8&sys_var=esc%40ped

Use the default protocol (tcp) and host (localhost:3306):

user:password@/dbname

No Database preselected:

user:password@/

Connection pool and timeouts

The connection pool is managed by Go’s database/sql package. For details on how to configure the size of the pool and how long connections stay in the pool see *DB.SetMaxOpenConns, *DB.SetMaxIdleConns, and *DB.SetConnMaxLifetime in the database/sql documentation [https://golang.org/pkg/database/sql/]. The read, write, and dial timeouts for each individual connection are configured with the DSN parameters readTimeout, writeTimeout, and timeout, respectively.

LOAD DATA LOCAL INFILE support

For this feature you need direct access to the package. Therefore you must change the import path (no _):

import "github.com/go-sql-driver/mysql"

Files must be whitelisted by registering them with mysql.RegisterLocalFile(filepath) (recommended) or the Whitelist check must be deactivated by using the DSN parameter allowAllFiles=true (Might be insecure! [http://dev.mysql.com/doc/refman/5.7/en/load-data-local.html]).

To use a io.Reader a handler function must be registered with mysql.RegisterReaderHandler(name, handler) which returns a io.Reader or io.ReadCloser. The Reader is available with the filepath Reader::<name> then. Choose different names for different handlers and DeregisterReaderHandler when you don’t need it anymore.

See the godoc of Go-MySQL-Driver [https://godoc.org/github.com/go-sql-driver/mysql] for details.

time.Time support

The default internal output type of MySQL DATE and DATETIME values is []byte which allows you to scan the value into a []byte, string or sql.RawBytes variable in your program.

However, many want to scan MySQL DATE and DATETIME values into time.Time variables, which is the logical opposite in Go to DATE and DATETIME in MySQL. You can do that by changing the internal output type from []byte to time.Time with the DSN parameter parseTime=true. You can set the default time.Time location [https://golang.org/pkg/time/#Location] with the loc DSN parameter.

Caution: As of Go 1.1, this makes time.Time the only variable type you can scan DATE and DATETIME values into. This breaks for example sql.RawBytes support [https://github.com/go-sql-driver/mysql/wiki/Examples#rawbytes].

Alternatively you can use the NullTime [https://godoc.org/github.com/go-sql-driver/mysql#NullTime] type as the scan destination, which works with both time.Time and string / []byte.

Unicode support

Since version 1.1 Go-MySQL-Driver automatically uses the collation utf8_general_ci by default.

Other collations / charsets can be set using the collation DSN parameter.

Version 1.0 of the driver recommended adding &charset=utf8 (alias for SET NAMES utf8) to the DSN to enable proper UTF-8 support. This is not necessary anymore. The collation parameter should be preferred to set another collation / charset than the default.

See http://dev.mysql.com/doc/refman/5.7/en/charset-unicode.html for more details on MySQL’s Unicode support.

context.Context Support

Go 1.8 added database/sql support for context.Context. This driver supports query timeouts and cancellation via contexts.
See context support in the database/sql package [https://golang.org/doc/go1.8#database_sql] for more details.

Testing / Development

To run the driver tests you may need to adjust the configuration. See the Testing Wiki-Page [https://github.com/go-sql-driver/mysql/wiki/Testing] for details.

Go-MySQL-Driver is not feature-complete yet. Your help is very appreciated.
If you want to contribute, you can work on an open issue [https://github.com/go-sql-driver/mysql/issues?state=open] or review a pull request [https://github.com/go-sql-driver/mysql/pulls].

See the Contribution Guidelines [https://github.com/go-sql-driver/mysql/blob/master/CONTRIBUTING] for details.

License

Go-MySQL-Driver is licensed under the Mozilla Public License Version 2.0 [https://raw.github.com/go-sql-driver/mysql/master/LICENSE]

Mozilla summarizes the license scope as follows:

MPL: The copyleft applies to any files containing MPLed code.

That means:

	You can use the unchanged source code both in private and commercially.

	When distributing, you must publish the source code of any changed files licensed under the MPL 2.0 under a) the MPL 2.0 itself or b) a compatible license (e.g. GPL 3.0 or Apache License 2.0).

	You needn’t publish the source code of your library as long as the files licensed under the MPL 2.0 are unchanged.

Please read the MPL 2.0 FAQ [https://www.mozilla.org/en-US/MPL/2.0/FAQ/] if you have further questions regarding the license.

You can read the full terms here: LICENSE [https://raw.github.com/go-sql-driver/mysql/master/LICENSE].

[image: Golang Gopher transporting the MySQL Dolphin in a wheelbarrow]Go Gopher and MySQL Dolphin

UUID package for Go language

[image: ../../../../_images/go.uuid.png]Build Status [https://travis-ci.org/satori/go.uuid]
[image: ../../../../_images/badge.svg]Coverage Status [https://coveralls.io/github/satori/go.uuid]
[image: ../../../../_images/go.uuid]GoDoc [http://godoc.org/github.com/satori/go.uuid]

This package provides pure Go implementation of Universally Unique Identifier (UUID). Supported both creation and parsing of UUIDs.

With 100% test coverage and benchmarks out of box.

Supported versions:

	Version 1, based on timestamp and MAC address (RFC 4122)

	Version 2, based on timestamp, MAC address and POSIX UID/GID (DCE 1.1)

	Version 3, based on MD5 hashing (RFC 4122)

	Version 4, based on random numbers (RFC 4122)

	Version 5, based on SHA-1 hashing (RFC 4122)

Installation

Use the go command:

$ go get github.com/satori/go.uuid

Requirements

UUID package requires Go >= 1.2.

Example

package main

import (
	"fmt"
	"github.com/satori/go.uuid"
)

func main() {
	// Creating UUID Version 4
	u1 := uuid.NewV4()
	fmt.Printf("UUIDv4: %s\n", u1)

	// Parsing UUID from string input
	u2, err := uuid.FromString("6ba7b810-9dad-11d1-80b4-00c04fd430c8")
	if err != nil {
		fmt.Printf("Something gone wrong: %s", err)
	}
	fmt.Printf("Successfully parsed: %s", u2)
}

Documentation

Documentation [http://godoc.org/github.com/satori/go.uuid] is hosted at GoDoc project.

Links

	RFC 4122 [http://tools.ietf.org/html/rfc4122]

	DCE 1.1: Authentication and Security Services [http://pubs.opengroup.org/onlinepubs/9696989899/chap5.htm#tagcjh_08_02_01_01]

Copyright

Copyright (C) 2013-2016 by Maxim Bublis b@codemonkey.ru.

UUID package released under MIT License.
See LICENSE [https://github.com/satori/go.uuid/blob/master/LICENSE] for details.

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/go.uuid.png
“build passing

_images/gomysql_m.png

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/go-mysql-driver_m.jpg

